首页> 外文OA文献 >Performance of Principal Component Analysis and Independent Component Analysis with Respect to Signal Extraction from Noisy Positron Emission Tomography Data : a Study on Computer Simulated Images
【2h】

Performance of Principal Component Analysis and Independent Component Analysis with Respect to Signal Extraction from Noisy Positron Emission Tomography Data : a Study on Computer Simulated Images

机译:从正电子发射断层图像数据中提取信号的主成分分析和独立成分分析性能:计算机模拟图像研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Multivariate image analysis tools are used for analyzing dynamic or multidimensional Positron Emission Tomography, PET data with the aim of noise reduction, dimension reduction and signal separation. Principal Component Analysis is one of the most commonly used multivariate image analysis tools, applied on dynamic PET data. Independent Component Analysis is another multivariate image analysis tool used to extract and separate signals. Because of the presence of high and variable noise levels and correlation in the different PET images which may confound the multivariate analysis, it is essential to explore and investigate different types of pre-normalization (transformation) methods that need to be applied, prior to application of these tools. In this study, we explored the performance of Principal Component Analysis (PCA) and Independent Component Analysis (ICA) to extract signals and reduce noise, thereby increasing the Signal to Noise Ratio (SNR) in a dynamic sequence of PET images, where the features of the noise are different compared with some other medical imaging techniques. Applications on computer simulated PET images were explored and compared. Application of PCA generated relatively similar results, with some minor differences, on the images with different noise characteristics. However, clear differences were seen with respect to the type of pre-normalization. ICA on images normalized using two types of normalization methods also seemed to perform relatively well but did not reach the improvement in SNR as PCA. Furthermore ICA seems to have a tendency under some conditions to shift over information from IC1 to other independent components and to be more sensitive to the level of noise. PCA is a more stable technique than ICA and creates better results both qualitatively and quantitatively in the simulated PET images. PCA can extract the signals from the noise rather well and is not sensitive to type of noise, magnitude and correlation, when the input data are correctly handled by a proper pre-normalization. It is important to note that PCA as inherently a method to separate signal information into different components could still generate PC1 images with improved SNR as compared to mean images.
机译:多元图像分析工具用于分析动态或多维正电子发射断层扫描,PET数据,目的是降低噪声,降低尺寸和分离信号。主成分分析是应用于动态PET数据的最常用的多元图像分析工具之一。独立分量分析是另一种用于提取和分离信号的多元图像分析工具。由于不同PET图像中存在较高且可变的噪声水平以及相关性,这可能会使多变量分析混淆,因此在应用之前,必须探索和研究需要应用的不同类型的预归一化(转换)方法这些工具。在这项研究中,我们探索了主成分分析(PCA)和独立成分分析(ICA)提取信号并降低噪声的性能,从而提高了动态PET图像序列中的信噪比(SNR),其中与其他一些医学成像技术相比,噪声的百分比有所不同。探索并比较了计算机模拟PET图像上的应用。 PCA的应用在具有不同噪声特征的图像上产生了相对相似的结果,但有一些细微的差异。但是,在预规范化类型方面看到了明显的差异。使用两种类型的归一化方法归一化的图像上的ICA似乎也表现相对较好,但没有像PCA那样达到SNR的提高。此外,在某些情况下,ICA似乎倾向于将信息从IC1转移到其他独立组件,并且对噪声水平更加敏感。 PCA是比ICA更稳定的技术,并且在模拟的PET图像中定性和定量地产生更好的结果。当通过适当的预规范化正确处理输入数据时,PCA可以很好地从噪声中提取信号,并且对噪声的类型,大小和相关性不敏感。重要的是要注意,PCA本质上是一种将信号信息分离为不同分量的方法,与平均图像相比,PCA图像仍可以产生具有更高SNR的PC1图像。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号